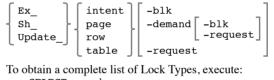


Sybase Adaptive Server Enterprise Lock Manager

Software Gems Pty Ltd Derek Ignatius Asirvadem Version 2.10 • 6 Aug 21

Sybase Lock Manager **1** Lock Escalation

Resolution


Isolation Level/SELECT	Acquires	Blocked by	Not Blocked by	Blocks	Not Blocks	Duration
0 READ UNCOMMITTED	None	None	Any	None	Any	
1 READ COMMITTED ASE Default	Shared	Exclusive	Shared	Exclusive	Shared	Read operation (Page; Row)
2 REPEATABLE READ DPL/DRL only	Shared	Exclusive	Shared	Exclusive	Shared	Transaction
3 SERIALIZABLE SQL Xact Default	Shared	Exclusive	Shared	Exclusive	Shared	Transaction
INSERT/UPDATE/DELETE	Update Exclusive	Shared Exclusive		Shared Exclusive		Transaction
FOR UPDATE DRL Only	Shared	Exclusive	Shared	Exclusive	Shared	Transaction
INSERT/UPDATE/DELETE	Update Exclusive	Shared Exclusive		Shared Exclusive		Statement

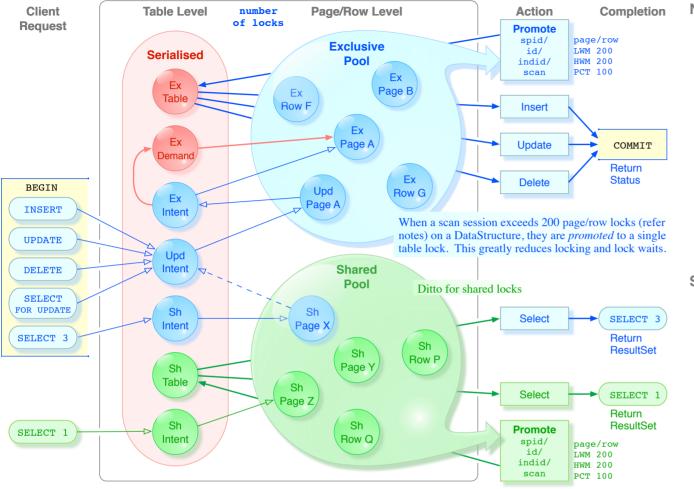
To obtain 2 Repeatable Read on APL tables, use Isolation Level 3

Note

- This is a simplified view, but it retains all the important aspects, and shows the Lock Types that are commonly visible; the entire set of Lock Types is on below
- Live objects have a shadow. Flat objects define the context in which an object is alive
- Technically, BEGIN/COMMIT TRAN define the chronological duration of a live Transaction, but here we wish to observe the duration of each constituent verb.
- Common lock types for ASE 11.9.2 to 15.7.x are shown here
- Cursor class and considerations (suh-low) not shown
- Lock Promotion is shown on the next page
- · Requests granted immediately rarely appear, and are not shown
- Isolation Level 2 on APL tables executes at Isolation Level 3
- During INSERT/UPDATE/DELETE if a Sh-Page or Sh-Row lock is not held, it must be acquired first (SELECT 3 is performed)
- If the database has Declarative Referential Integrity (Foreign Keys), when Exclusive locks are held for a row, ASE will acquire a Sh-Intent lock on the parent row; the efficiency in that should not be under-estimated
- An Ex-Intent lock can get skipped up to 3 times by Sh-Page; it then escalates to Ex-Demand, which is not skipped

Lock Type [66]

SELECT number, name FROM master..spt values WHERE type = "L"ORDER BY number


Caveat • "Two Phased Locking (2PL)"

- The Sybase ASE Locking strategy is, well, ordinary, with internal Escalation (based on serialisation or hierarchy of Lock Types, this page) and Promotion (next page).
- It is not a "Two Phased Locking" strategy, there are no phases. Note sagely, the serialisation of table locks, vs the non-serialisation of page/row locks.
- However the "literature" in this field, which is a flood of unscientific filth, promotes the notion that "Two Phased Locking" is the alternative to "Multi-Version Concurrency Control". It is not.
- First "MVCC" needs to be appreciated for what it really is: a complete failure, because it:
- breaks the first principles of a database (shared online resource; single version of the truth), • maintains private versions, which is nothing less than schizophrenic, because such versions are
- stale (not current) and offline.
- it does not control concurrency in any way, the label is fraudulent, it is really MV-non-CC.
- This new "Two Phased Locking" exists only in MV-non-CC, for the purpose of concurrency control (yet again, putting the lie to the label, yet again proving that Locking is essential), both internally and via **manual locking** by the application, which creates contention, and is fatal
- What it does in that insane context, is irrelevant to a sane person, but note, the asylum promotes our Lock Manager as their pathetic "2PL', so as to erect a Straw Man, and then to demean it,
- Therefore, do not view the ASE Locking strategy through the myopic lens of either "2PL", or insane lens of MV-non-CC which is its context, but appreciate it as the Ordinary Locking required to resolve resource contention (since the 1950's), with substantial advancements by Sybase, and unchanged since 1984.
- Truth is single and permanent, falsities are multiple, ever-changing.

ResultSet

Sybase Lock Manager 2 Lock Promotion

OnLine Transaction Processing

- *Sybase ASE* is a brilliant high-volume **OLTP Server**, but that does not mean that any code that is thrown at it will be magically transformed into OLTP.
- An OLTP system is achieved only through the diligent and consistent implementation of OLTP Standards. That means:
- Smallest Possible Transactions that are carefully designed to minimise contention
- coded using a standard **Transaction Template** (sequenced code blocks)
- genuine **Optimistic Locking** (components in the database *and* in the application)
- an overall Access Sequence.
- Systems implemented using OLTP standards thrive on an OLTP Server such as ASE, they do not suffer locking problems.
- Naïve implementations; the lack of understanding of transaction and contention issues; the absence of standard methods to overcome them, will result in a contentious system, that suffers locking problems at every level, on any platform. Fixing one level of contention only serves to expose the next level of contention.
- Lock contention; being lock-bound, is an irrefutable indicator that the application code does not conform to the OLTP Standard.
- A configuration of anything more than 50,000 locks (10,000 on a small server) means OLTP Standards have not been implemented in the system, and thus OLTP behaviour cannot be expected from it, except by faith in magic.
- Increasing the number locks merely transfers the location of the unaddressed application problem to the Lock Manager.

n Note

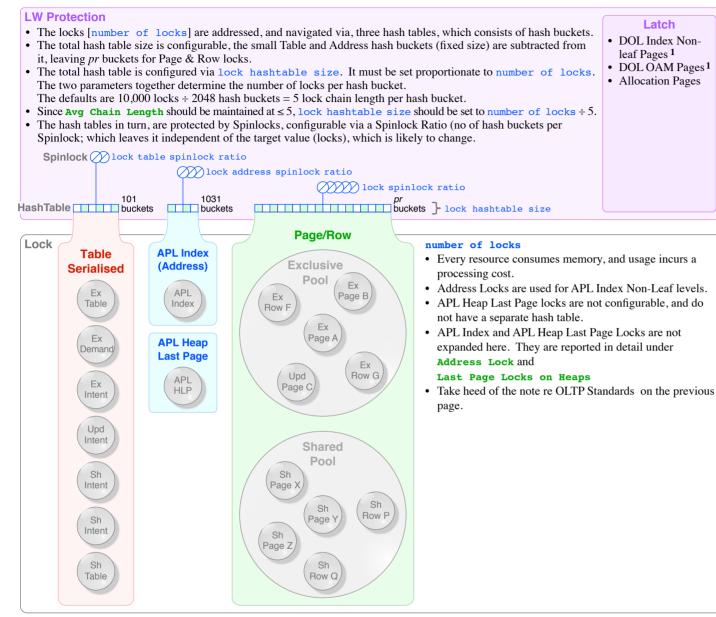
- Lock Promotion for a single object is shown
- Lock Promotion is per scan session per Logical DataStructure (all partitions), but locks are accrued per spid; therefore locks per spid may exceed thresholds
- Lock Promotion may be blocked due to conflicting locks held by another spid; the spid continues without Promotion. That results in increased locks.
- Contrary to the mythology, and consistent with science, row level locking massively *increases* the number of locks in use, and therefore the opportunity for lock contention.
- Lock Promotion thresholds {page | row} lock promotion {LWM | HWM | PCT} may be reset at the Table or Database or Server levels.
- However, that is not recommended as it is anti-social (imposes lock waits on other users) and it will make your server lock-bound.
- For a full-blown example, showing server level monitor metrics for 24 hours, inspect the following sections in this server monitoring report:
- Kernel/Context Switch
- Lock Manager

Specifying Isolation in Context

SET TRANSACTION ISOLATION LEVEL {0 1 2 3} SET LOCK {WAIT [seconds] NOWAIT} LOCK TABLE IN {SHARED EXCLUSIVE} MODE	 Isolation Level set for Session Default is 1
Transaction BEGIN TRAN SET TRANSACTION ISOLATION LEVEL {0 1 2 3} SET LOCK {WAIT [seconds] NOWAIT} LOCK TABLE IN {SHARED EXCLUSIVE} MODE	Isolation Level set for TransactionDefault is 3
Query SELECT FROM table AT ISOLATION {0 1 2 3}	Isolation Level may be qualified for each Query
Table FROM table_x [HOLDLOCK NOHOLDLOCK] [READPAST]	• Isolation Level may be qualified for each Table

Qualifier

This shows the current Isolation Level (above), the qualifier, and the effect. Refer also to the Resolution table (previous page).


١L	Qualifier	Meaning	
1	HOLDLOCK	Hold Lock until end of Transaction	
2 3	NOHOLDLOCK	Release Lock after Read completes (not end of tran)	
	for update (15.7, DRL Only)	Obtain Exclusive Lock until end of Transaction	
	READPAST	Silently skip rows with Exclusive Locks	
	NOLOCK	Table Alias Common Mistake !	

Sybase Lock Manager

3 Configuration

DataStructure

- For tables that suffer Allocation Page contention (mass inserts), tune des_greedyalloc
- For genuine Relation tables (Clustered Index, APL only, composite Primary Key), tune ascinserts

Home Map

Configuration

Lock Type	Hash Buckets	Spinlock Ratio	Spinlocks
Page/Row Default	lock hashtable size 2048	lock spinlock ratio 85	24
Table Default	101 101	lock table spinlock ratio 20	5
APL Index (Address) Default	1031 1031	lock address spinlock ratio	

Contention Resolution

- In the beginning, almost all resource contention was resolved using the Locks. As ASE progressed and matured, more efficient forms of contention resolution were implemented *for specific resources*. Currently there are **four types** of contention resolution methods related to content.
- Lightweight Protection ² is a technical term for the fast contention resolution mechanism, such as a Spinlock or Latch. Prior to DOL (V12), it was for memory-only resources.
- Latches and LW Protection for DOL are neither visible nor monitored, and they cannot be configured. The only metrics reported for them are under **Task Context Switches**, which serves another purpose, therefore it is indicative but indirect. Further, the metric names do not reflect the contentious resource or actual use.
- Generally Spinlocks are reported in their relevant sections. There is no section for Spinlocks that are used for DOL Index Root pages.

Mechanism	Reported As	Really Means
Lock	Lock Management 4 categories; full detail	(Explicit name given)
Latch	TCS/Latch Contention	DOL Index Non-leaf & OAM
LW Protection	TCS/Modify Conflicts	Dirty Reads & DOL sys tables
Spinlock		DOL Index/Root

Contention Object per Resource

Contention	Is Resolved By			
On	APL	DOL		
AllocationPage	Latch	Latch		
OAM Page	Page Lock	Latch		
Index/Root	Address Lock	Spinlock		
Index/Non-leaf	Address Lock	Latch		
CI/Leaf Page	Page Lock	No CI for DOL		
Неар	Page Lock	Page/Row Lock		
	Last Page Lock			
Data	Page Lock	Page/Row Lock		

DOL "Data Only Locked" & "No Index Lock" Myth

- DOL tables have the **exact same** contention re Index pages, and the **same** need to resolve it: the difference is, Latches are used instead of Locks.
- Declaring that "DOL tables do not use Locks on index pages" and failing to mention that they use Latches, is gross misrepresentation. Even the name "Data Only Locked" is false.
- If DOL tables are used, TCS/Latch Contention will be heavy (compare against TCS/ Address Locks).

¹ Many system tables are DOL.

² The Lock Manager covers **DataStructures**, and their contention resolution mechanisms. Lightweight Protection is also used for **Data Caches** and other memory structures.