
This is a response to a question from dzhu on StackOverflow:

How to reference groups of records in relational databases

Response to Update 1
Questions in the comments re Hierarchies.

Record IDs are Physical, Non-relational
If you want a Relational Database, you need Relational Keys, not Record IDs. Additionally, starting the Data
Modelling exercise with a Record ID mindset, an ID stamped on every file, cripples the Data Modelling
exercise.
Please read this Answer.

Data Hierarchy
Hierarchies Exist in the Data.
Hierarchies occur naturally in the world, they are everywhere. That results in hierarchies being implemented in
many databases. The Relational Model was founded on, and is a progression of, the Hierarchical Model. It
supports hierarchies brilliantly. Unfortunately the famous writers do not understand them, so they suppress it.
Just like with the Relational Model, they do not understand it, so they teach pre-1970s Record Filing Systems
badged as "relational". As a result of that, the hierarchies commonly implemented are grossly incorrect and
massively inefficient.
Conversely, if the hierarchy that occurs in the data that is being modelled, is modelled correctly, and
implemented using genuine Relational constructs (Relational Keys, Normalisation, etc) the result is an easy-to-
use and easy-to-code database, as well as being devoid of data duplication (in any form) and extremely fast. It
is quite literally Relational at its best.
There are three types of Hierarchies that occur in data. If you want a full discourse, please ask a new question.
Here is a summary.
1. Hierarchy Formed in Sequence of Tables

The hierarchy is most visible in the form of the Relational Key, which progresses in compounding. The
Relational Key is essential for ordinary data integrity, the kind that Hidders and 95% of the database
implementations do not have. This requirement, the need for Relational Keys, occurs in every database,
and conversely, the lack of it cripples the database.
The Hidders Response has a great example of Hierarchies:
a. that exist naturally in the data
c. that OO/ORM types are blind to them (as Hidders is)
d. consequently they implement RFS with no integrity, and then they try to "fix" the problem in the object

layers, with even more complexity.
Whereas I implemented the hierarchy in a straight-forward Relational form, and the problem disappeared
entirely, eliminating the proposed “solution”. Relational-isation eliminates Theory.
The two hierarchies in those four tables are:

Domain::Animal::Harvest

Domain::Activity::Harvest

Here's another example, although the modelling is not yet complete. Make sure you examine the
Predicates, and page 2 for the actual Keys. The hierarchies are:

Subject::CategorySubject::ExaminationResult

Category::CategorySubject::ExaminationResult

Person::Registrant::Candidate::ExaminationResult

Note that last one is a progression of state, thus the Key does not compound:

dzhu’s StackOverflow Question 05 Nov 18
PerformanceDBA • Response to Update 1 Page 1 of 2

http://stackoverflow.com/users/4826671/dzhu
http://stackoverflow.com/users/4826671/dzhu
http://stackoverflow.com/q/29837901/
http://stackoverflow.com/q/29837901/
http://stackoverflow.com/a/29726132/484814
http://stackoverflow.com/a/29726132/484814
http://www.softwaregems.com.au/Documents/Article/Application%20Architecture/UTOOS%20Response.pdf
http://www.softwaregems.com.au/Documents/Article/Application%20Architecture/UTOOS%20Response.pdf
http://www.softwaregems.com.au/Documents/Student%20Resolutions/lee%20TRD%206.pdf
http://www.softwaregems.com.au/Documents/Student%20Resolutions/lee%20TRD%206.pdf

2. Hierarchy of Rows within One Table
This hierarchy is an ancestor/descendant structure (without the OO connotations and limitations), for a single
parent (ancestor). It is a tree structure of some sort, there are millions of them (eg. the unix file system: a file
belongs to just one folder). Done properly, there is no limit to the number of levels, the height of the tree.
You do need recursion in the server, in order to traverse the tree structure vertically, so that you can write
simple procs and functions that are recursive.
Here is one for Messages (archived version of article deleted from host).
• Please read both the Question and the Answer, , and visit the linked Data Model.
• Note that the seeker did not mention hierarchy or tree, because the knowledge of Hierarchies in

Relational Databases is suppressed, but (from the comments) once he saw the Answer and the Data
Model, he recognised it, and it suited him perfectly.

• The hierarchy is:
Message::Message[Reply] …

3. Hierarchy of Rows within One Table, Via an Associative Table
This hierarchy too, is an ancestor/descendant structure, but allows multiple parents (ancestors). It requires
two relationships, so an additional Associative Table is required. This is commonly known as the Bill of
Materials structure. Unlimited height, recursively traversed.
The Bill of Materials Problem was a limitation of HDBMS, that we overcame partially in Network DBMS.
It was a burning issue at the time, and one of IBM's problems that Codd was explicitly charged to overcome.
Of course he met those goals, and exceeded them spectacularly.

Here is the Bill of Materials hierarchy, modelled and implemented according to the Relational Model.
• Please excuse the preamble, it is for another article. Skip the top two rows, look at the bottom row.
• Progeny is also given.
• The hierarchies are:

Part[Assembly]::Part[Component] …

Part[Component]::Part[Assembly] …

Person[Parent]::Person[Child] …

Person[Child]::Person[Parent] …

Ignorance Of Hierarchy
Due to the suppression of hierarchies in the ‘education’ systems, and in Modern ‘science’, the hierarchies that
do exist in nature are not recognised as such, and therefore they are neither modelled nor implemented as
relational hierarchies. Separately, when they are recognised, they are implemented in the most ridiculous, ham-
fisted ways. Note that both of these examples, and anything else they come up with in the future (other than the
Relational Hierarchy) focus on the rendition of the data (which is irrelevant an multiple), than on the data itself
(single).
1. Adjacency List

The suppressors hilariously declare that the Relational Model doesn't support hierarchies, in ignorance or
denial of the fact that it is founded on the Hierarchical Model. So they can't use the name. This is the stupid
name they use, they cannot name it for what it is because that would expose precisely what they are
suppressing. Generally, the implementation will be cognisant of the hierarchy in the data, but it will be very
poor, limited by physical Record IDs, etc.
And they are clueless as to how to traverse the tree, that one needs recursion.

2. Nested Set
An abortion, straight from hell. This fixes the records in the filing system, in concrete. Moving a single
node requires the entire tree to be re-written. Maintenance is prohibitive. Beloved of the Date; Darwen;
Fagin; Fowler; Ambler; and Celko types.
As you can imagine, the code that is required to maintain and navigate these monstrosities, is horrendous.
The web is full of them.

05 Nov 18 dzhu’s StackOverflow Question
Page 2 of 2 PerformanceDBA • Response to Update 1

https://www.softwaregems.com.au/Documents/Student%20Resolutions/Ali%20-%20How%20to%20build%20a%20table%20for%20a%20private%20messaging%20system%20that%20supports%20replies.pdf
https://www.softwaregems.com.au/Documents/Student%20Resolutions/Ali%20-%20How%20to%20build%20a%20table%20for%20a%20private%20messaging%20system%20that%20supports%20replies.pdf
http://www.softwaregems.com.au/Documents/Student%20Resolutions/Bill%20of%20Materials.pdf
http://www.softwaregems.com.au/Documents/Student%20Resolutions/Bill%20of%20Materials.pdf

