^{ghost-1} TA Solution

Relational Data Model • Table Attribute

Data Model • Table Attribute • Relational Fail

Data Model • Table Attribute • Improved, but still Fails

ghost-1 TA Rule, Constraint, SQL

Relational Data Model • Constraint

Requirement · Rule

1. Car Dealerships

have a unique business id number, dealership name, city, state, and a unique website URL. The business id is a number in the range from 1000-9999.

2. Salespersons

have a first name, last name, age, gender, and a unique employee id number.

The employee number is in the range 100-999.

3. Customers

have a first name, last name, city, state, gender, age, and a unique taxpayer id number. The taxpayer id number is 9 digits.

4. Cars

have a make, model, year, suggested price, and a unique vehicle id number. A car can have (possibly multiple) colors that should be modeled as an attribute. Note: the make of a car is the manufacturer (e.g., Ford, Honda, BMW) and the model is the name of the model (e.g.Civic, Accord, CRX).

5. Salespersons

work for dealerships. In order to be in the database,

a salesperson must work for a dealership.

However, a dealership may exist in the database without any salespersons. Dealerships have many salespersons who work for them, and a salesperson may work for many different dealerships. The database should record the start date when a salesperson began working for a dealership.

8. Salespersons sell cars to customers.

Even if a salesperson has not sold any cars to customers they should still be stored in the database. However, the database should

only store information about customers who have purchased a car from a salesperson. Information about cars owned by dealerships should be stored in the database regardless of whether they have been sold or not. A salesperson may sell a particular car to only one customer.

Similarly, a customer may purchase a particular car from only one salesperson. However, a customer may purchase more than one car from the same salesperson. When a salesperson sells a car to a customer, the sales price and date should be recorded in the database.

7. Dealerships own cars.

A dealership may own many cars, or they may be completely out of inventory and own zero cars.

A car can only be owned by one dealership and must be owned by a dealership in order to be in the database.

The database should record the date that the dealership acquired the car and the price that the dealership paid for the car. \Box

SQL Level Constraint/Note

 CREATE DATATYPE [2] BusinessNo SMALLINT CHECK (1000 >= business id <= 9999)

- Storing age and other relative values is an error: the database will require update to all rows every year. Facts such as BirthDate are permanent. Age can be derived from that.
- CREATE DATATYPE [2] EmployeeNo SMALLINT CHECK (100 >= business_id <= 999)
- CREATE DATATYPE [2] TaxpayerNo DECIMAL(9, 0) CHECK (100000000 >= business_id <= 999999999)
- That breaks 1NF: Each column must be Atomic wrt the platform
 No. I will not model an error the model contains the contains

No, I will not model an error, the model contains the correct method

- Since the Car is unique (AK: VehicleNo),
- it can be sold by only 1 Salesperson (BusinessNo)
- Therefore, a Car is not Independent (No Car table), it exists only in the context of a Dealer (BusinessNo, VehicleNo)
- The uniqueness of a Car (VehicleNo) is preserved by the AK
- Since the Car is unique (AK: VehicleNo)
- it can be owned by only 1 Dealer (BusinessNo)it can be sold to only 1 Customer (TaxpayerNo)

Note

1 Refer to the **Subtype** document (§ 1 Implementation: Relationship only) for a proper understanding of Relationships, and how Cardinality is implemented.

- All writes to the database should be via Transactions only, thus they have to be written
- If you have an SQL platform, it has ACID Transactions, which is the simple and corrrect method implement Cardinailty Rules
- If you have a pretend-sql suite that is MyNONsql, InnoDB supports Transactions (but not true ACID)
- If you have a pretend-sql suite that is PusgreNONsql, it has no Transactions; no ACID, but Functions are "transactional".
- a. Eg. there would not be a Customer_Add Transaction, the CustomerCar_Add Transaction would INSERT the Customer if he does not exist.
- b. Eg. there would not be a Person_Add Transaction, the SalesPerson_Add Transaction would INSERT the Person if he does not exist.

2 For constraints such as Datatype and range, it is best to create a Datatype, named for the Key, and used wherever the Key is. The syntax for the SQL that is required to create a Datatype, is dependent on the particular platform (SQL flavour).

3 Alternate Keys are given for Keys that are missing or neglected.

