
UTOOS Response
1 Introduction

Derek Asirvadem • 19 Jun 15 UTOOS Response • 1 of 10Copyright © 2015 Software Gems Pty Ltd

➀ Null as Type
➁ One of Two Required

➂ Sea-Angler
 unions or intersects required

➃ Type Loss
➄ Mackerel | Fish = Fish

Introduction

In this paper we investigate union-types in object oriented IQL-like schemas. These types can be used to model null values, variant types
and generalization classes. They make, however, deciding equivalence and subtyping more difficult. We will show that the complexity of
these two problems is co-NP-complete and present complete sets of rules for deciding both problems. The combination of union-types
and multiple inheritance makes it also harder to detect typing-conflicts in a schema. We will give an algorithm for deciding this and
discuss its complexity. Furthermore, we will present an algorithm for detecting schemas that define types with a bounded number of
values. Finally, an algorithm will be presented that verifies whether in a schema the type of a subclass specifies options that are forbidden
by its superclasses.

Abstract

Proceedings of the Fifth International Workshop on Database Programming Languages, Italy, 1995
Union-Types in Object-Oriented Schemas Copyright © the authors
Jan Hidders, Dept of Math & Computer Science, Eindhoven University of Technology, Eindhoven, NL

Identity

Union-Types in Object-Oriented Schemas

Jan Hidders

Dept. of Math. and Comp. Science

Eindhoven University of Technology

PO box 513, 5600 MB Eindhoven

e-mail: hidders@win.tue.nl

Abstract

In this paper we investigate union-types in object oriented IQL-like schemas. These types can be used to model null
values, variant types and generalization classes. They make, however, deciding equivalence and subtyping more dif-
ficult. We will show that the complexity of these two problems is co-NP-complete and present complete sets of rules
for deciding both problems. The combination of union-types and multiple inheritance makes it also harder to detect
typing-conflicts in a schema. We will give an algorithm for deciding this and discuss its complexity. Furthermore,
we will present an algorithm for detecting schemas that define types with a bounded number of values. Finally, an
algorithm will be presented that verifies whether in a schema the type of a subclass specifies options that are forbidden
by its superclasses.

1 Introduction

The introduction of union-types in object-oriented schemas makes them more expressive. Usually, however, they are

limited to disjoint unions [9] or labeled unions such as variant records [7]. Because of this limitation the reasoning

about these types remains simple [6, 13]. We argue that general union-types such as used in [10, 2, 5] are a useful

extension and even arise naturally in data models without union-types.

We can use them, for instance, to model optional integer fields by specifying their type as where

is a special basic type with only one value viz. . Moreover, we could define several kinds of nulls and let the type

be . If an object has two fields that are both optional we might want to specify that

one of them has to be defined but not both. This can be done by giving the object’s class the tuple-type

. This is an example of how in general it is possible to represent variant records.

In data models that do not have union-types such as in [1] they arise naturally in the context of multiple inheritance.

They can, for instance, be used to denote generalization classes without explicitly adding them to the schema. This can

be demonstrated by the schema depicted in Figure 1. Here we see the two classes and both

with the field catchwhich is, respectively, a set of and a set of . Since is a subclass

of and it inherits the field catch that must be both a set of and a set of s.

The type of the catch of a is a set of , or with intersection-types as a set of

which is actually the same type. Without union-types or intersection-types this type cannot be denoted

unless an extra class is added that is the generalization of and , and a subclass of

and . Although this class might seem quite natural here, this approach can lead to the addition of more

unnatural generalization classes.

Although union-types give us more expressiveness they also make the reasoning about types more difficult. Differ-

ent type expressions can now denote the same type. For instance, the type is

equivalent with and in the schema of Figure 1 it holds that is equal to

. The same problem occurs with the rules for subtyping. Although the rules for types without union-types remain

It might seem more obvious to use the type but due to the subtyping semantics the two fields would not be mutually
exclusive.

5th International Workshop on Database Programming Languages, Gubbio, Italy, 1995 1

The incumbent <name> project uses the classic OO/ORM monolithic model. The absence of an Open Architecture, with a Relational database,
has been identified as the main error in the project, and its replacement is planned. However, the Team Leader of the project has proposed that the
project should instead be further funded. The central issue in the proposal is that the OO/ORM model is sound and has theoretical support, and
two theoretical papers that validate the model, are referenced. This article is the formal response requested by the bank. It addresses the issues in
the proposal, and deals with <one of> the theoretical papers in detail.

1.1 Subject Paper
This section identifies and introduces the subject theoretical paper. The full paper is available on the shared drive <directory>.
The paper is typical of the many such papers that are used to support the OO/ORM monolithic model. While this response treats one typical paper
in detail, the theme and finding of the response applies to all papers that support the OO/ORM model.
• The subject author is a lecturer in database theory. As is typical of such, he has little understanding of the Relational Model (the "relational"

they discuss is a small fraction of the RM, plus non-relational additions that suit their purpose), or of implementation imperatives.
• He is also well-known for a number of papers in the object modelling space. The Team Leader suggests there are four that he uses as reference.
• He is a proponent of Foundations of Databases (commonly called the "Alice Book" by Abitebul, Hull & Vianu), which has previously been

reviewed, as presenting nothing of the sort, as well as installing the a number of fictions re the Relational Model and OO in the readers mind.
Thus the Relational Model is diminished, and the OO componentry is artificially elevated.

• Note the References (next page):
• The paper is clearly based on, and supports, the OO/ORM monolithic model. The Team Leader's positioning of the paper is not disputed.
• Some of the authors cited are mentors of the subject author (keeping my review of that book in mind).

The paper makes five proposals (right), with ➂ being central, thus the main point we address. For our purposes, ➃ and ➄ are a subset of ➂, and
also solved.

Extract
• This document is not an academic review. It is a response from the implementation universe,

where the subject paper has already been used, to support implementation decisions.
• Due to customer confidentiality, the full response (which addresses a second theoretical paper, and

includes project details) cannot be provided. This Extract is the portion of the response that the
customer has kindly permitted for release into the public domain. It is released on the basis that the
subject paper is public domain, thus the findings and the damage it causes, should be as well.

Freely available online

Expansion
Although this document started out as an Extract (23 Jan
15), it is being used as a reference, regarding the nature of
this most common problem, and its solution. That includes
an audience who are not necessarily tertiary educated.
Hence the detail has been expanded since the Extract was
created (06 Jun 15).

http://win.ua.ac.be/~adrem/bibrem/pubs/hidders.2.pdf

UTOOS Response
1 Introduction

Derek Asirvadem • 19 Jun 15 UTOOS Response • 2 of 10Copyright © 2015 Software Gems Pty Ltd

Union-Types in Object-Oriented Schemas

Jan Hidders

Dept. of Math. and Comp. Science

Eindhoven University of Technology

PO box 513, 5600 MB Eindhoven

e-mail: hidders@win.tue.nl

Abstract

In this paper we investigate union-types in object oriented IQL-like schemas. These types can be used to model null
values, variant types and generalization classes. They make, however, deciding equivalence and subtyping more dif-
ficult. We will show that the complexity of these two problems is co-NP-complete and present complete sets of rules
for deciding both problems. The combination of union-types and multiple inheritance makes it also harder to detect
typing-conflicts in a schema. We will give an algorithm for deciding this and discuss its complexity. Furthermore,
we will present an algorithm for detecting schemas that define types with a bounded number of values. Finally, an
algorithm will be presented that verifies whether in a schema the type of a subclass specifies options that are forbidden
by its superclasses.

1 Introduction

The introduction of union-types in object-oriented schemas makes them more expressive. Usually, however, they are

limited to disjoint unions [9] or labeled unions such as variant records [7]. Because of this limitation the reasoning

about these types remains simple [6, 13]. We argue that general union-types such as used in [10, 2, 5] are a useful

extension and even arise naturally in data models without union-types.

We can use them, for instance, to model optional integer fields by specifying their type as where

is a special basic type with only one value viz. . Moreover, we could define several kinds of nulls and let the type

be . If an object has two fields that are both optional we might want to specify that

one of them has to be defined but not both. This can be done by giving the object’s class the tuple-type

. This is an example of how in general it is possible to represent variant records.

In data models that do not have union-types such as in [1] they arise naturally in the context of multiple inheritance.

They can, for instance, be used to denote generalization classes without explicitly adding them to the schema. This can

be demonstrated by the schema depicted in Figure 1. Here we see the two classes and both

with the field catchwhich is, respectively, a set of and a set of . Since is a subclass

of and it inherits the field catch that must be both a set of and a set of s.

The type of the catch of a is a set of , or with intersection-types as a set of

which is actually the same type. Without union-types or intersection-types this type cannot be denoted

unless an extra class is added that is the generalization of and , and a subclass of

and . Although this class might seem quite natural here, this approach can lead to the addition of more

unnatural generalization classes.

Although union-types give us more expressiveness they also make the reasoning about types more difficult. Differ-

ent type expressions can now denote the same type. For instance, the type is

equivalent with and in the schema of Figure 1 it holds that is equal to

. The same problem occurs with the rules for subtyping. Although the rules for types without union-types remain

It might seem more obvious to use the type but due to the subtyping semantics the two fields would not be mutually
exclusive.

5th International Workshop on Database Programming Languages, Gubbio, Italy, 1995 1

Union-Types in Object-Oriented Schemas

isaisa isaisa isaisa

isa isa

Angler

Fish

MackerelPike Tuna Shrimp

Sea-Animal

Sea-Angler

Sea-Fisherman

catch catch

Figure 1: A schema with multiple inheritance

the same, the rules for union-types cannot be simply defined by induction on the type. For instance, it is not sufficient to

check that type is a subtype of type or type in order to see whether is a subtype of . In this paper we

present complete rules for both equivalence and subtyping, and show how they provide necessary and sufficient condi-

tions for deciding equivalence and subtyping. This results in algorithms of which we will discuss the complexity. The

presented rules are similar to those presented in [3] where it is shown how a sound and complete subtyping algorithm

for union types can be obtained out of some algorithm for intersection types. An example of such an algorithm for

intersection types can be found in [12]. The main difference with our work is that we do not allow general functional

types but only tuple-types (which might be regarded as a very limited functional type), and that we have set-types and

classes as types.

The presented reasoning rules can also be used in algorithms for detecting schemas with inconsistencies and/or

improbable cases. An example of an inconsistency is where the types of a class and its superclasses are not compatible.

This can be checked by taking for every class the intersection of its type and the types of all the superclasses and deciding

whether this type is equivalent with i.e. the empty type. If this holds then the schema is inconsistent and the class will

always be empty. These problems were already discussed in [4, 11, 14] for the more conventional object-oriented data

model. For data models with union- and intersection-types they were studied in [5]. The main differences between

this work and ours is that we allow types of arbitrarily nested sets and tuples but we limit the classes that an object

can simultaneously belong to. Another difference is that we present algorithms for detecting schemas with improbable

cases that indicate modeling errors.

An example of an improbable case is a type where the value of a field can only be a bounded number of values. Let,

for instance a class have two superclasses with, respectively, the types and , then

field would always have the value with objects in the subclass. Another example would be two superclasses

with, respectively, the types and where the value of field would have to be of type in

the subclass. Note that this type is not empty but contains only one value viz. (the empty set). Although these cases

are not strictly wrong they might indicate a modeling error and should be detected by a CASE tool. We will present an

algorithm for detecting types with a bounded number of values or with fields of tuples that have only a bounded number

of possible values.

Finally, we will present an algorithm for checking whether the type of a subclass is a proper extension of the types

of its superclasses. A type is a proper extension of another type if it does not specify options already forbidden by

the other type. We say that a schema is proper iff the types specified with the classes are proper extensions of the

intersection of the types of the superclasses (not including the class itself). If a schema is not proper it is likely that it

5th International Workshop on Database Programming Languages, Gubbio, Italy, 1995 2

Union-Types in Object-Oriented Schemas

isaisa isaisa isaisa

isa isa

Angler

Fish

MackerelPike Tuna Shrimp

Sea-Animal

Sea-Angler

Sea-Fisherman

catch catch

Figure 1: A schema with multiple inheritance

the same, the rules for union-types cannot be simply defined by induction on the type. For instance, it is not sufficient to

check that type is a subtype of type or type in order to see whether is a subtype of . In this paper we

present complete rules for both equivalence and subtyping, and show how they provide necessary and sufficient condi-

tions for deciding equivalence and subtyping. This results in algorithms of which we will discuss the complexity. The

presented rules are similar to those presented in [3] where it is shown how a sound and complete subtyping algorithm

for union types can be obtained out of some algorithm for intersection types. An example of such an algorithm for

intersection types can be found in [12]. The main difference with our work is that we do not allow general functional

types but only tuple-types (which might be regarded as a very limited functional type), and that we have set-types and

classes as types.

The presented reasoning rules can also be used in algorithms for detecting schemas with inconsistencies and/or

improbable cases. An example of an inconsistency is where the types of a class and its superclasses are not compatible.

This can be checked by taking for every class the intersection of its type and the types of all the superclasses and deciding

whether this type is equivalent with i.e. the empty type. If this holds then the schema is inconsistent and the class will

always be empty. These problems were already discussed in [4, 11, 14] for the more conventional object-oriented data

model. For data models with union- and intersection-types they were studied in [5]. The main differences between

this work and ours is that we allow types of arbitrarily nested sets and tuples but we limit the classes that an object

can simultaneously belong to. Another difference is that we present algorithms for detecting schemas with improbable

cases that indicate modeling errors.

An example of an improbable case is a type where the value of a field can only be a bounded number of values. Let,

for instance a class have two superclasses with, respectively, the types and , then

field would always have the value with objects in the subclass. Another example would be two superclasses

with, respectively, the types and where the value of field would have to be of type in

the subclass. Note that this type is not empty but contains only one value viz. (the empty set). Although these cases

are not strictly wrong they might indicate a modeling error and should be detected by a CASE tool. We will present an

algorithm for detecting types with a bounded number of values or with fields of tuples that have only a bounded number

of possible values.

Finally, we will present an algorithm for checking whether the type of a subclass is a proper extension of the types

of its superclasses. A type is a proper extension of another type if it does not specify options already forbidden by

the other type. We say that a schema is proper iff the types specified with the classes are proper extensions of the

intersection of the types of the superclasses (not including the class itself). If a schema is not proper it is likely that it

5th International Workshop on Database Programming Languages, Gubbio, Italy, 1995 2

Union-Types in Object-Oriented Schemas

5 Conclusions

We have discussed the problems of reasoning about equality and subtyping in IQL-like schemas containing union-types

and intersection-types. It was shown that these problems are co-NP-complete but that there are relatively simple sets of

rules that can be used to decide them. The presented rules are similar to those presented in [3] where it is shown how a

sound and complete subtyping algorithm for union types can be obtained out of some algorithm for intersection types.

The main differences with our work is that we do not allow general functional types but only tuple-types and that we

have set-types and classes as types.

We used these rules to detect inconsistent schemas and showed that this problem is also co-NP-complete. These

results are comparable to those in [5] where the same problem was studied for schemas that allowed objects to belong

simultaneously to an arbitrary set of classes but limited their values to relatively simple tuples. Finally, we also have

used the reasoning rules as a starting point for algorithms detecting situations in schemas that might indicate a modeling

error.

Acknowledgments: I would like to thank Jan Paredaens for encouragingme to write this paper and helpingmewriting

it. Furthermore, I would like to thankVal Tannen and Peter Buneman for pointingme to related work and, finally,

the anonymous referees for their helpful remarks which helped me to improve this paper.

References

[1] S. Abiteboul and R. Hull. IFO: A formal semantic database model. ACM Transactions on Database Systems,

12(4):525–565, December 1987.

[2] S. Abiteboul and P.C. Kanellakis. Object identity as a query language primitive. In J. Clifford, B. Lindsay, and

D.Maier, editors, Proc. of the 1989 ACM SIGMOD Int’l Conf. onManagement of Data, number 18:2 in SIGMOD

Record, pages 159–173. ACM Press, 1989.

[3] F. Barbanera, M. Dezani-Ciancaglini, and U. de’Liguoro. Intersection and union types: Syntax and semantics.

Information and Computation, 119(2):202–230, 1995.

[4] K. Brathwaite. Object-Oriented Database Design: Concepts and Application. Academic Press, Inc., 1993.

[5] D. Calvanese and M. Lenzerini. Making object-oriented schemas more expressive. In Proc. of the 13th ACM

Symp. on Principles of Database Systems, pages 243–254, 1994.

[6] L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138–164, 1988.

[7] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured documents to novel query facilities. In

Proc. of the 1994 ACM SIGMOD Int’l Conf. on Management of Data, pages 313–324, 1994.

[8] M.R. Garey and D.S. Johnson. Computers and Intractability – A guide to NP-completeness. W.H. Freeman and

Company, San Francisco, 1979.

[9] G.M. Kuper and M.Y. Vardi. The logical data model. ACM Transactions on Database Systems, 18(3):379–413,

September 1993.

[10] C. Lecluse and P. Richard. Modeling complex structures in object-oriented databases. In Proc. of the 8th ACM

Symp. on Principles of Database Systems, pages 362–369, 1989.

[11] T. W. Ling and P. K. Teo. Inheritance conflicts in object-oriented systems. In Proc. of the 4th Int’l Conf. on

Database and Expert Systems Applications, number 720 in Lecture Notes in Computer Science, pages 189–200.

Springer-Verlag, 1993.

5th International Workshop on Database Programming Languages, Gubbio, Italy, 1995 11

Union-Types in Object-Oriented Schemas

[12] B.C. Pierce. A decision procedure for the subtype relation on intersection types with bounded variables. Technical

Report CMU-CS-89-169, School of Computer Science, CarnegieMellon University, Pittsburgh, PA 15213-3890,

August 1989. from: http://www.cl.cam.ac.uk/users/bcp1000/ftp/index.html.

[13] D. Remy. Typechecking records and variants in a natural extension of ML. In Proc. of ACM symp. on Principles

of Programming, pages 242–249, 1989.

[14] K.D. Schewe, B. Thalheim, and I. Wetzel. Foundations of object-oriented database concepts. Technical report,

University of Hamburg, 1992.

5th International Workshop on Database Programming Languages, Gubbio, Italy, 1995 12

Reference

1 Yet another "semantic" semantic model, in denial of the then extant and established semantic models and Standards.

1

UTOOS Response
2 Issue

Derek Asirvadem • 19 Jun 15 UTOOS Response • 3 of 10Copyright © 2015 Software Gems Pty Ltd

Although this identifies the main errors, with both the paper, and the OO/ORM monolithic model that is employed in the current project, it is by no
means exhaustive. Collectively, it is the mindset of a narrow focus on the OO space, and ignorance of the long-established requirements for
Relational databases.
1 The subject author makes the classic, and now infamous, error that both OO/ORM theoreticians and practitioners make, that of perceiving Data

through the lens of OO 1. The database is treated merely as a storage location, to afford persistence for the singly-important objects. Thus the
entire exercise of analysing and modelling the data, and doing so within the Relational context, is eliminated, and none of the benefits of that
exercise is realised.
• Conversely, all the constraints and controls on the data, which should be deployed in the database, are deployed in the object layers. Not

surprisingly, it does not work, due to the myriad problems that ensue from invalid deployment.
2 The principle of separating Data vs Process, and using the separately applicable methods for analysis, design, and implementation, is a long-

established principle in all applied sciences, no less in the IT sphere. This has been ignored 2.
2.1 Here, the subject author has determined issues (problems ➂ ➃ ➄) that are directly related to the integrity of data, but he has failed to

identify the cause.
• Failure to recognise the problem for what it is, and to determine the cause
• Failure to address the problem in the causative location (the database),
• Instead he addresses it in the symptomatic location (the OO monolith, the object classifiers)
• He proposes yet more complexity, in the layers that are already complex, and that fail.

2.2 Note that the subject author's mentor and cited reference [1], S Abiteboul, has introduced a 'semantic model' in 1994 that combines Data
and Process. (Of course, by definition, all models are semantic.) This in ignorance, or subversion, of standards:
• IDEF1X, the standard for [semantically] modelling Relational databases (the Data) 1985
• SSADM or IDEF0, the established standards for [semantically] modelling Processes and Systems 1980

2.3 This 'semantic model' is the basis for the OO/ORM Monolithic model, where object notation is introduced into an otherwise data-only
model. It is primitive, and has only rudiments of the capability of IDEF1X, which existed for a decade before it was invented.

2.4 While the OO/ORM theoreticians and implementers use this 'semantic model', generally the more capable ones express it using UML 3.
3 Like many researchers these days, the subject author is totally ignorant re (i) Data Modelling, and (ii) Relational Databases, their purpose and

their capabilities, etc. Thus, he constructs an apparatus within the OO arena, in an attempt to supply some fragment of Database and Relational
capability. The notion of novelty is intact only within this arena, the problem was solved in the Relational Database arena in the 1970's.
• Due to [2], the subject author is unaware of the fact that the attempt is weak, misplaced, and that it will never be a complete solution.

4 Note that the OO/ORM monolith is not an architecture, it is a non-architecture. Something that its a single vertical stack of several dozen
layers, with no differentiation between components (eg. vis-a-vis Data vs Process) cannot be construed to be an architecture. It is an absence
of architecture.
• Further, in the context of Open Architecture databases, it is closed. The database can only be accessed via the application 4.

For the above, the following references are given. These papers are essential reading for all professionals in the IT space, theoreticians as well as
practitioners:
• Unskilled and Unaware of It: How Difficulties in Recognising One's Own Incompetence Lead to Inflated Self-Assessments 1999

Justin Kruger, David Dunning
• Why the Unskilled are Unaware: Further Explorations of (Absent) Self-insight among the Incompetent 2008

Joyce Erhlinger, Kerri Johnson, Matthew Banner, David Dunning, Justin Kruger
• Abraham Maslow's Law of the Instrument, commonly known as Maslow's Hammer 1966.

The danger is, to view all problems from the perspective of one's profession, "if all you have is a hammer, everything looks like a nail".
In consideration of the above Errors of Principle, the premise of the paper is invalid, without any scientific basis. Thus the propositions therein are
all invalid.
That being established, auditors and managers need read no further. The rest of this response provides (a) detail to support the finding, and (b) the
correct implementation method, including both data and process models.

2.1 Error of Principle

1 Which lens is very small, single-purpose. The result, myopia. The construction, a monolith. It is a joke, even among the OO developers.
2 While neither defending the Team Leader's use of the OO/ORM monolithic model, nor his failure to separate Data vs Process, it must be noted that he is following

the theoreticians in the OO/ORM space, and the theoreticians who serve that space are bankrupt. Despite the numerous academic papers that are used to prop up the
model, the space is devoid of theory that passes the litmus test. An examination of any such paper reveals its bankruptcy, its denial of related science. It is the same
in the Relational database space, there has been no progress in the theory since the great Dr E F Codd.

3 UML is neither a standard nor a modelling facility. It has no capacity for decomposition, and makes no distinction between Data and Process. At best, it is a
documentation method, one that has one single symbol, and a morass of notation that most modellers do not understand. The result, as evidenced in the project, is a
free-for-all diagram, labelled "UML", one that is accepted without understanding by the very people who need to understand it.

4 Although it must be mentioned, the architectural issues that cause the problems in the incumbent project are not addressed here (refer to the Technical Audit).
ø A word about the interpretation of Null.

Open Architecture

joke

http://www.softwaregems.com.au/Documents/Article/Application%20Architecture/Open%20Architecture.pdf
http://geek-and-poke.com/geekandpoke/2013/7/13/foodprints

UTOOS Response
2 Issue

Derek Asirvadem • 19 Jun 15 UTOOS Response • 4 of 10Copyright © 2015 Software Gems Pty Ltd

2.2 Denial of the Hierarchy

a Even though the diagram clearly depicts an Hierarchy, and the inheritance problem mentioned by the subject author relies upon an Hierarchy,
the evidence is, he is in a state of denial regarding the Hierarchies that exist naturally in the data 1.

b Scientific work cannot be executed while one is in a state of denial of reality, or of related science. Such a state has a crippling effect on the
tasks being performed.

c One example of the crippling effect of denial: it has the result that his classifications (refer text and diagram) are each limited to a single level.
Thus the exercise of Classifying, and Identifying, Data, is severely hampered, the result is a primitive classification.

d A second example of the crippling effect: while he does mention the relevance of preventing "types that are forbidden in their superclasses",
which intimates an intuition that Hierarchies do exist in the data, he fails completely in:
i determining that those Hierarchies exist
ii Identifying and Classifying them, and
iii arranging them in some Order
iv such that the content of higher-order types constrain the content of lower-order types.

In the post-Codd era, there has been a propagation and marketing of books which allege to champion and further the Relational Model. However,
such books expose only a fraction of the RM, and champion the authors' own ideas, which as evidenced, is limited to pre-1970 Record Filing
Systems. Such books, and such authors, are in fact anti-relational.
A consequence of this is a pervasive denial of Hierarchies, they are unaware (or worse):
• that the Relational Model is founded on the Hierarchical Model
• that hierarchies exist in the data, and that they are specifically supported in the RM
• that the Keys that result from the Relational Normalisation given by Codd, are hierarchical
An implementation of a database without these hierarchies, robs it of the integrity, power, and speed that is available in RM-compliant databases.
Here, the Integrity is at issue.
In addition to [2.1 Error of Principle], the following causative errors are noted.
1 The author of the subject paper is a typical lecturer, a student of these post-Codd authors. As such, he demonstrates the typical blindness re

hierarchies. This blindness leads to a failure to recognise that an hierarchy exists naturally in the data, and to model and implement it as such.
2 The second item is also typical of these students, and of the OO/ORM implementers. Instead of focussing on analysing and classifying the data,

the author focuses on data content, on instances of the data.
3 Further, the data is evaluated without meaning, the meaning having been lost due to [2.1 Error of Principle.1] and the consequential absence of

formal Data Analysis.
• The subject author focuses on the catch, the target, without understanding the data; where the catch came from, its provenance.

4 Stated otherwise, he makes the mistake, typical of theoreticians, of failing to distinguish base vs derived relations. Catch is a derived relation,
but he focuses on it as if it were a base relation.

4 Further, while noting that the model is already complex, and blind to the fact that it has failed, universally, he addresses it by adding more
complexity.

Union-Types in Object-Oriented Schemas

isaisa isaisa isaisa

isa isa

Angler

Fish

MackerelPike Tuna Shrimp

Sea-Animal

Sea-Angler

Sea-Fisherman

catch catch

Figure 1: A schema with multiple inheritance

the same, the rules for union-types cannot be simply defined by induction on the type. For instance, it is not sufficient to

check that type is a subtype of type or type in order to see whether is a subtype of . In this paper we

present complete rules for both equivalence and subtyping, and show how they provide necessary and sufficient condi-

tions for deciding equivalence and subtyping. This results in algorithms of which we will discuss the complexity. The

presented rules are similar to those presented in [3] where it is shown how a sound and complete subtyping algorithm

for union types can be obtained out of some algorithm for intersection types. An example of such an algorithm for

intersection types can be found in [12]. The main difference with our work is that we do not allow general functional

types but only tuple-types (which might be regarded as a very limited functional type), and that we have set-types and

classes as types.

The presented reasoning rules can also be used in algorithms for detecting schemas with inconsistencies and/or

improbable cases. An example of an inconsistency is where the types of a class and its superclasses are not compatible.

This can be checked by taking for every class the intersection of its type and the types of all the superclasses and deciding

whether this type is equivalent with i.e. the empty type. If this holds then the schema is inconsistent and the class will

always be empty. These problems were already discussed in [4, 11, 14] for the more conventional object-oriented data

model. For data models with union- and intersection-types they were studied in [5]. The main differences between

this work and ours is that we allow types of arbitrarily nested sets and tuples but we limit the classes that an object

can simultaneously belong to. Another difference is that we present algorithms for detecting schemas with improbable

cases that indicate modeling errors.

An example of an improbable case is a type where the value of a field can only be a bounded number of values. Let,

for instance a class have two superclasses with, respectively, the types and , then

field would always have the value with objects in the subclass. Another example would be two superclasses

with, respectively, the types and where the value of field would have to be of type in

the subclass. Note that this type is not empty but contains only one value viz. (the empty set). Although these cases

are not strictly wrong they might indicate a modeling error and should be detected by a CASE tool. We will present an

algorithm for detecting types with a bounded number of values or with fields of tuples that have only a bounded number

of possible values.

Finally, we will present an algorithm for checking whether the type of a subclass is a proper extension of the types

of its superclasses. A type is a proper extension of another type if it does not specify options already forbidden by

the other type. We say that a schema is proper iff the types specified with the classes are proper extensions of the

intersection of the types of the superclasses (not including the class itself). If a schema is not proper it is likely that it

5th International Workshop on Database Programming Languages, Gubbio, Italy, 1995 2

Union-Types in Object-Oriented Schemas

isaisa isaisa isaisa

isa isa

Angler

Fish

MackerelPike Tuna Shrimp

Sea-Animal

Sea-Angler

Sea-Fisherman

catch catch

Figure 1: A schema with multiple inheritance

the same, the rules for union-types cannot be simply defined by induction on the type. For instance, it is not sufficient to

check that type is a subtype of type or type in order to see whether is a subtype of . In this paper we

present complete rules for both equivalence and subtyping, and show how they provide necessary and sufficient condi-

tions for deciding equivalence and subtyping. This results in algorithms of which we will discuss the complexity. The

presented rules are similar to those presented in [3] where it is shown how a sound and complete subtyping algorithm

for union types can be obtained out of some algorithm for intersection types. An example of such an algorithm for

intersection types can be found in [12]. The main difference with our work is that we do not allow general functional

types but only tuple-types (which might be regarded as a very limited functional type), and that we have set-types and

classes as types.

The presented reasoning rules can also be used in algorithms for detecting schemas with inconsistencies and/or

improbable cases. An example of an inconsistency is where the types of a class and its superclasses are not compatible.

This can be checked by taking for every class the intersection of its type and the types of all the superclasses and deciding

whether this type is equivalent with i.e. the empty type. If this holds then the schema is inconsistent and the class will

always be empty. These problems were already discussed in [4, 11, 14] for the more conventional object-oriented data

model. For data models with union- and intersection-types they were studied in [5]. The main differences between

this work and ours is that we allow types of arbitrarily nested sets and tuples but we limit the classes that an object

can simultaneously belong to. Another difference is that we present algorithms for detecting schemas with improbable

cases that indicate modeling errors.

An example of an improbable case is a type where the value of a field can only be a bounded number of values. Let,

for instance a class have two superclasses with, respectively, the types and , then

field would always have the value with objects in the subclass. Another example would be two superclasses

with, respectively, the types and where the value of field would have to be of type in

the subclass. Note that this type is not empty but contains only one value viz. (the empty set). Although these cases

are not strictly wrong they might indicate a modeling error and should be detected by a CASE tool. We will present an

algorithm for detecting types with a bounded number of values or with fields of tuples that have only a bounded number

of possible values.

Finally, we will present an algorithm for checking whether the type of a subclass is a proper extension of the types

of its superclasses. A type is a proper extension of another type if it does not specify options already forbidden by

the other type. We say that a schema is proper iff the types specified with the classes are proper extensions of the

intersection of the types of the superclasses (not including the class itself). If a schema is not proper it is likely that it

5th International Workshop on Database Programming Languages, Gubbio, Italy, 1995 2

2.2.1 Datagram

1 Noting that the subject author has written another paper titled How to recognise different kinds of tree patterns from quite a long way away, this denial or blindness
of hierarchies (tree patterns, visually, as depicted) is particularly ironic.

UTOOS Response
3 Solution

Derek Asirvadem • 19 Jun 15 UTOOS Response • 5 of 10Copyright © 2015 Software Gems Pty Ltd

This section provides the details for the solution to the declared problem. This is not a basetype:subtype problem; it is not a class:subclass issue;
and it is not a union-type issue, all of which are allopathic approaches, treating the problem where it appears, rather than determining and treating
the cause. Even the multiple inheritance mentioned, is incidental, it is not a part of the actual problem.

1 Although many theoretical papers these days are based on the erection of a Straw Man problem, and subsequently propose a solution to burn it down, for some
nefarious academic purpose, it is unlikely that that is the case with the subject author. My considered opinion, after reading five of his papers, and interacting with
him in open fora, is that he is simply ignorant of the relevant issues, that he is a product of education system in which each researcher operates in staggering
isolation of reality, of related science.

2 That does not mean the paper has no value. Outside the Relational context, such as the OO/ORM monolith arena, and the "relational" theoretician circus, Record
Fling Systems with no Keys are the norm. The paper may well have value there.

3 On the application side, in poor quality applications, where standards are not observed, it remains possible that Typing errors (not Data Integrity errors) can
nevertheless be created.

4 Direct writes to the tables, or via Views, is prevented. Education re OLTP Standards and ACID Transactions for the developers is included in the project.

3.2 Architecture
The solution involves a classic implementation of the Open Architecture model:
1 A single, completely independent Relational database, providing maximal Data Independence, Integrity, and Transactions. Refer [5 Data

Model].
• The data is fully Normalised (3NF as Codd intended, to the fullness of the RM, far more than "5NF").
• All data values are constrained by Domain and Key, as Codd intended it (as opposed to the fragmented definition in "domain key normal

form", which the theoreticians state as being impossible)
• Modelled and documented according to the IDEF1X Standard.
• All writes to the database are via ACID Transactions only 4. This is the Database API.
• All reads are directly from the tables, or from Views constructed for a purpose, ie. a single SELECT command.
• Further, the data persists beyond the life of any application, and it is extended independently (independent of the lot, in concert with one).

2 One or more applications of any type, interacting directly with the database. Refer [6 Application].
The rest of this response provides examples of relevant portions of the architecture, for discussion purposes. A Relational database and a classic
OO application is treated. The first activity is [4 Data Analysis].

Open Architecture

3.1 Issue Address
Referring to the errors identified in [2 Issue], the solution consists of:
1 Observing the arhcitectural principle of separation of Data vs Process. Once they have been separated, it is easy to recognise that the problem
lies in the data, its integrity (or lack of it), and to fix the problem where it exists. This is a reversal of Maslow's Hammer. Which consequently
eliminates the use of the OO/ORM monolithic model, and opens the avenue to treat data, as data.
2 Application of the Relational Model, and Modelling the data. The analysis is detailed in section [4 Data Analysis], with [4.B] demonstrating the

analysis and modelling together, in a single exercise. Here, the issue of data integrity is addressed in the correct location, the database, where
all controls on data are required to be deployed, by virtue of standards.
• Indeed, the simple act of placing the data in the Relational context causes the declared problem to disappear 1.
• The entire issue, including the consequence in the object classifiers, of Typing, and of Union Types is eliminated 2.
• Relational-isation exposes, and eliminates, superfluous theory 1.

3 Observing the Hierarchies that exist in the data, and implementing them squarely, without impediment.
4 Regarding (a) the OO/ORM monolithic model, and (b) the notion of controlling Data in the Process space, in the subject paper (as well as the

hundreds of similar papers supporting the notion, and specifically the four papers referenced by the Team Leader); the current project; and all
implementations that employ that model, it must be said that:
• Any and all attempts to fix such problems where they do not exist, will fail, as enumerated in the current project.
• To the extent that they appear to work, they are (i) transient, and (ii) incomplete. In time, the temprorarily succesful attempt is exposed as a

failure, and the control of data integrity (in the incorrect location) is exposed as grossly incomplete and fractional.
5 The specific problems referenced in the subject paper that apply to the project (ie. the proposal to increase funding and increase complexity,

rather than to replace it) are solved.
➂ Sea-Angler Unions or intersects not required
➃ Type Loss Prevented
➄ Mackerel | Fish = Fish Prevented
They fall into two categories (although not determined as such in the subject paper): Data Integrity and Typing.
• Data Integrity errors are entirely eliminated by the solution given here. Erroneous data will simply not appear in any application object.
• Typing errors are prevented. All proposed complexity is eliminated. Classifiers and Determination of Types remain simple, thus less prone

to error.
6 Finally, the subject paper illustrates one form of Data Integrity problem, one form of Typing error. Note that the architectural solution provided

here eliminates all forms of Data Integrity errors, and prevents the great majority of Typing errors 3.

http://www.softwaregems.com.au/Documents/Article/Application%20Architecture/Open%20Architecture.pdf

UTOOS Response
4 Data Analysis

Derek Asirvadem • 19 Jun 15 UTOOS Response • 6 of 10Copyright © 2015 Software Gems Pty Ltd

Angler

Sea
Fisher

Fish

Animal

Fisher

Sea
Angler

Catch

Domain

SeaLand

…

…

…

…

Angler

Tuna

Mackerel

Pike

Shrimp

Fisher

The Missing Link

1 Amass all the given Data, as is. Tabulate it, in order to expose its features, to classify it. The problem shows it face, even at this early stage

2 Catch is a result, or derived data, not base data, not relevant at this stage.
3 The obvious fact is, both the Actors and the possible Catches operate in, and are limited to, a Domain. That needs to be formally Identified, and

the data re-classified. (The Classifications are open rectangles; the data items being classified are closed.)

4 Next, we formalise the Classifications, and name them (Fish is a form of Animal; Fisher and Angler are forms of Activity). There are now two
separate classifications per Animal and Activity, across one of Domain.

5 Next, we determine the Identifiers for the Classifications. That is a simple matter because we already know that Land- and Sea-Fisher needs to
be discriminated, and so does Land- and Sea-Animal. Its discriminator (or Type in OO terms) is:

Domain (Domain)

6 Now for the remaining Classifications:
Activity (Domain, Activity)
Animal (Domain, Animal)

7 The natural Hierarchy is both obvious and visible. Notice that Activity and Animal are each dependent on, and exist within, the Domain; they
are not Independent.

8 And now for the result, a derived relation, Catch, which is dependent on both the Activity and the Animal. The Identifier is, again, obvious:
Catch (Domain, Activity, Animal)

4.A Mass Approach

Although the analysis of the data in this case is exceedingly simple, it is given if only for the purpose of being complete, of avoiding the
production of a second document in the event such detail was requested.
• the architectural principle that Data and Process must be separated, and treated separately, is observed.
• given that in 1995 (the date of the subject paper), the Relational Model was firmly established as The Method for understanding and modelling
data, that context is employed.
Two alternate methods are given, the first for those who are unfamiliar with the process of Analysis, who perceive the data as a featureless mass,
the second for those with some experience with the process.

Angler

Animal

Activity

Domain

SeaLand

Angler

Tuna

Mackerel

Pike

Shrimp

Fisher

Angler

Tuna

Mackerel

Pike

Shrimp

Fisher

Angler

SeaAnimal

Fish

In case it needs to be stated, Catch.Domain is both the Domain of Activity, and the Domain of Animal 1. The third purpose of
Catch.Domain is to form the Identifier, or Relational Key, which as usual, is Hierarchical.

1 In Relational Databases, each column serves more than one purpose, that is the basis of Identifiers, of Relational reduction.

UTOOS Response
4 Data Analysis

Derek Asirvadem • 19 Jun 15 UTOOS Response • 7 of 10Copyright © 2015 Software Gems Pty Ltd

Land Angler
Land Hunter
Sea Fisher
Sea Angler
Sea Hunter

4.B Set Approach
1 Stop focussing on the data content, determine the type of data, construct the classifications.
2 Catch is a result or derived data, not base data, not relevant at this stage.
3 Determine the entities. We have here, two Things:

Actors (anglers, fishers and hunters are all Actors)
Animals (fish, shrimp and deer are all Animals)

4 These are the Relational Sets or Entities (quite differents to the data-content sets in [4.A])
5 The item that is not identified, that must be exposed, is that both Actors and Animals exist within, and are limited to, a Domain. That is the third

Thing. If this is not clear, revert to [4.A Mass Approach].
6 At this stage, Key Determination, the Entities, the Sets, are defined by their Keys, only. Do not concern yourself with attributes. The data

content is provided for descriptive purposes, only.

7 Now determine the organisation of the Sets, and model it. Choose the Keys (Identifiers) to suit that organisation.
8 Of course the foundation Set is Independent, the rest are Dependent. (The methodology is IDEF1X, unchanged: Codd and Brown, based on

Chen's earlier work. However an extended notation that emphasises the Key is used; it should not require explanation.)

9 Now determine Catch, where it belongs, and its Identifier. It is a combination of Activity and Animal, ie. it has the Identifying characteristics of
both.

10 The Catch is already limited to a Domain, by virtue of its Identifier, and that Domain is limited to both the Domain of Activity and the Domain
of Animal. Thus a land actor can never catch a sea animal, etc.

Deer
Shrimp
Pike
Mackerel
Tuna

Angler
Hunter
Fisher

Land
Sea

Land Deer
Sea Shrimp
Land Pike
Sea Mackerel
Sea Tuna

Land
Sea

Land Angler Pike
Land Hunter Deer
Sea Fisher Tuna
Sea Fisher Mackerel
Sea Fisher Shrimp
Sea Angler Tuna
Sea Angler Mackerel
Sea Hunter Seal

Domain
(Domain)

Animal
(Animal)

Activity
(Activity)

Domain
Domain

Activity
Domain
Activity

Catch
Domain
Activity
Animal

Animal
Domain
Animal

Domain
Domain

Activity
Domain
Activity

Animal
Domain
Animal

UTOOS Response
5 Data Model

Derek Asirvadem • 19 Jun 15 UTOOS Response • 8 of 10Copyright © 2015 Software Gems Pty Ltd

Example Transaction
T License_Grant/Revoke

T Harvest_Add/Mod/Drop

Domain
Description
Domain

Activity
Activity
Description

Domain
Animal
Animal
Description

Domain

Domain
Land
Sea

Activity
Land Angler
Sea Sea-Fisher
Land Hunter
Sea Whaler

Animal
Land Deer
Sea Shrimp
Land Pike
Sea Mackerel
Sea Tuna

Harvest
Land Angler Pike
Land Hunter Deer
Sea Sea-Fisher Tuna
Sea Sea-Fisher Mackerel
Sea Sea-Fisher Shrimp

ProducesHosts

Fulfils

Harvest

LicenseeNo

Weight
Number
Date

Activity

Animal

Domain

Entity Type
Reference
Identifying Entity
Transaction

IDEF1X Notation

1 There is no suggestion that the subject paper itself is incomplete. The data elements given are quite adequate for its stated purpose. That purpose is devoid of
context.

The exercise [4 Data Analysis] addresses all the data given in the subject paper, it is complete in itself. Nevertheless, a full Data Model has been
requested by the bank, it is provided here. That however, exposes the issue that the elements given in the subject paper are incomplete, without
context 1. In order for the Data Model to be complete, such that each object can be contemplated in its full context, all relevant tables are given.
The sample data excludes LicenseeNo, it matches [4.B Set Approach].

• Notice the result is an Hierarchy, in both:
• the layout of the tables, and
• the components of the Keys.

• Per exercise [4 Data Analysis], the Integrity of the Harvest (which the subject paper is missing) is furnished by the Keys, which must be present
anyway. If the Licensee Primary Key and Alternate Key are switched, as is typical of 'good' Record Filing Systems, or if there are no Primary
Keys (all surrogates), as is typical of 'poor' Record Filing Systems, the Integrity of Harvest is lost.

• 'Catch' is merely the Harvest of one particular Date. Likewise 'Trip' is a particular Date range. Harvest is the name of the row, and of the set.

...
PersonNo
Person

Licensee

ExpiryDate
LicenceClass

LicenseeNo
Activity

LicenceNo AK

Domain

Attracts

Collects

Is Licensed To

http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Notation.pdf

UTOOS Response
6 Application

Derek Asirvadem • 19 Jun 15 UTOOS Response • 9 of 10Copyright © 2015 Software Gems Pty Ltd

0..* 0..*

0..* 0..*

6.1 Classifier (Suggested)

0..*0..*

The implementation of an Open Architecture Relational database poses no limitations to the design of the application, or the classifiers within it.
Indeed, it eliminates the great bulk of "Object Relational Mapping", which is desirable, since that "mapping" is fraught with problems.
1 That the data content of all objects will enjoy Data Integrity is guaranteed by, and within, the Relational Database, it has nothing to do with the

classifiers or the application.
2 Therefore any collection of classes may be defined in an application that uses such a database. A suggestion of classes is given.
3 UML is intended for the OO monolith model, where everything is assumed to be in a single package (it has just one object, with a mass of

notation), in particular it is inadequate for defining data elements, specific types of dependencies,constraints, etc. Thus:
• This should not be viewed as equivalent to the Data model, which is rich in specific detail (particularly re the data hierarchy; details of the

relationships), even though the overall structure appears to match it. These are object classifiers, and it is merely a one-to-one mapping.
• These classifiers are for definition purposes, to fill windows, drop-downs, etc, thus they 'match' the tables (or views) in the database.
• There are no formal rules for data objects, let alone Relational objects, let alone specific dependency types. It is a free-for-all. Thus the

notation used is simply that which is most understood by the project team. The aggregators may just as well be simple dependencies.
• The cardinality at the aggregator end is always 1.

RDb: xHarvest

+ HarvestAdd(
Domain,
Activity,
LicenceNo,
Animal,
Date,
Number,
Weight
): ReturnCode

≪interfaceExt≫
RDb: Select

+ executeQuery(
sql: String
): ReturnCode
ResultSet[*] {query}

≪interfaceExt≫
RDb: xLicence

+ LicenceGrant(
Domain,
Activity,
PersonNo,
LicenceClass
): ReturnCode
LicencNo

+ LicenceRevoke(
LicenceNo
): ReturnCode

≪interfaceExt≫

Questions have been raised re how the Relational database will be updated, in the absence of OO/ORM direct updates. Although this will be
covered in detail in the education delivery, an example is provided here, in order for this response to be complete. Again, the Open Architecture
document provides an overview. The method that is used to update the database consists of a set of Methods, it is the Database API.
• Within the scope of "Object Relational mapping", the most problematic area concerns the direct updates to database tables. That entire set of

problems is eliminated by the implementation of a set of ACID Transactions, which can be executed by any application.
• Each Method is in fact a Transaction stored procedure, resident in the database. The Method is merely a wrapper on the application side to call

it from the OO framework.
• UML, in its monolithic myopia, does not provide symbols or notation for an external system, thus the notation is stretched here. Again, in the

notation that the project team understands. ReturnCode values are documented once, elsewhere.

6.2 Method

Open Architecture

+ personNo: Integer
Person

+ domain: String
+ animal: String
+ description: String

Animal

+ domain: String
+ activity: String
+ personNo: Integer
+ licenceNo: String
+ licenceClass: String
+ expiry: Date

Licensee

+ animal: String
+ date: Date
+ number: Integer
+ weight: Real

Harvest

+ domain: String
+ activity: String
+ description: String

Activity

+ domain: String
+ description: String

Domain

http://www.softwaregems.com.au/Documents/Article/Application%20Architecture/Open%20Architecture.pdf

UTOOS Response
6 Application

Derek Asirvadem • 19 Jun 15 UTOOS Response • 10 of 10Copyright © 2015 Software Gems Pty Ltd

Union-Types in Object-Oriented Schemas

isaisa isaisa isaisa

isa isa

Angler

Fish

MackerelPike Tuna Shrimp

Sea-Animal

Sea-Angler

Sea-Fisherman

catch catch

Figure 1: A schema with multiple inheritance

the same, the rules for union-types cannot be simply defined by induction on the type. For instance, it is not sufficient to

check that type is a subtype of type or type in order to see whether is a subtype of . In this paper we

present complete rules for both equivalence and subtyping, and show how they provide necessary and sufficient condi-

tions for deciding equivalence and subtyping. This results in algorithms of which we will discuss the complexity. The

presented rules are similar to those presented in [3] where it is shown how a sound and complete subtyping algorithm

for union types can be obtained out of some algorithm for intersection types. An example of such an algorithm for

intersection types can be found in [12]. The main difference with our work is that we do not allow general functional

types but only tuple-types (which might be regarded as a very limited functional type), and that we have set-types and

classes as types.

The presented reasoning rules can also be used in algorithms for detecting schemas with inconsistencies and/or

improbable cases. An example of an inconsistency is where the types of a class and its superclasses are not compatible.

This can be checked by taking for every class the intersection of its type and the types of all the superclasses and deciding

whether this type is equivalent with i.e. the empty type. If this holds then the schema is inconsistent and the class will

always be empty. These problems were already discussed in [4, 11, 14] for the more conventional object-oriented data

model. For data models with union- and intersection-types they were studied in [5]. The main differences between

this work and ours is that we allow types of arbitrarily nested sets and tuples but we limit the classes that an object

can simultaneously belong to. Another difference is that we present algorithms for detecting schemas with improbable

cases that indicate modeling errors.

An example of an improbable case is a type where the value of a field can only be a bounded number of values. Let,

for instance a class have two superclasses with, respectively, the types and , then

field would always have the value with objects in the subclass. Another example would be two superclasses

with, respectively, the types and where the value of field would have to be of type in

the subclass. Note that this type is not empty but contains only one value viz. (the empty set). Although these cases

are not strictly wrong they might indicate a modeling error and should be detected by a CASE tool. We will present an

algorithm for detecting types with a bounded number of values or with fields of tuples that have only a bounded number

of possible values.

Finally, we will present an algorithm for checking whether the type of a subclass is a proper extension of the types

of its superclasses. A type is a proper extension of another type if it does not specify options already forbidden by

the other type. We say that a schema is proper iff the types specified with the classes are proper extensions of the

intersection of the types of the superclasses (not including the class itself). If a schema is not proper it is likely that it

5th International Workshop on Database Programming Languages, Gubbio, Italy, 1995 2

Union-Types in Object-Oriented Schemas

isaisa isaisa isaisa

isa isa

Angler

Fish

MackerelPike Tuna Shrimp

Sea-Animal

Sea-Angler

Sea-Fisherman

catch catch

Figure 1: A schema with multiple inheritance

the same, the rules for union-types cannot be simply defined by induction on the type. For instance, it is not sufficient to

check that type is a subtype of type or type in order to see whether is a subtype of . In this paper we

present complete rules for both equivalence and subtyping, and show how they provide necessary and sufficient condi-

tions for deciding equivalence and subtyping. This results in algorithms of which we will discuss the complexity. The

presented rules are similar to those presented in [3] where it is shown how a sound and complete subtyping algorithm

for union types can be obtained out of some algorithm for intersection types. An example of such an algorithm for

intersection types can be found in [12]. The main difference with our work is that we do not allow general functional

types but only tuple-types (which might be regarded as a very limited functional type), and that we have set-types and

classes as types.

The presented reasoning rules can also be used in algorithms for detecting schemas with inconsistencies and/or

improbable cases. An example of an inconsistency is where the types of a class and its superclasses are not compatible.

This can be checked by taking for every class the intersection of its type and the types of all the superclasses and deciding

whether this type is equivalent with i.e. the empty type. If this holds then the schema is inconsistent and the class will

always be empty. These problems were already discussed in [4, 11, 14] for the more conventional object-oriented data

model. For data models with union- and intersection-types they were studied in [5]. The main differences between

this work and ours is that we allow types of arbitrarily nested sets and tuples but we limit the classes that an object

can simultaneously belong to. Another difference is that we present algorithms for detecting schemas with improbable

cases that indicate modeling errors.

An example of an improbable case is a type where the value of a field can only be a bounded number of values. Let,

for instance a class have two superclasses with, respectively, the types and , then

field would always have the value with objects in the subclass. Another example would be two superclasses

with, respectively, the types and where the value of field would have to be of type in

the subclass. Note that this type is not empty but contains only one value viz. (the empty set). Although these cases

are not strictly wrong they might indicate a modeling error and should be detected by a CASE tool. We will present an

algorithm for detecting types with a bounded number of values or with fields of tuples that have only a bounded number

of possible values.

Finally, we will present an algorithm for checking whether the type of a subclass is a proper extension of the types

of its superclasses. A type is a proper extension of another type if it does not specify options already forbidden by

the other type. We say that a schema is proper iff the types specified with the classes are proper extensions of the

intersection of the types of the superclasses (not including the class itself). If a schema is not proper it is likely that it

5th International Workshop on Database Programming Languages, Gubbio, Italy, 1995 2

6.3 Instance/Monolith

1 The notations used are not recognisable, thus I cannot produce the
equivalent in the solution below. Classes are mentioned but not
defined. However, as discussed in the text, I understand the subject
author intends to show the lack of integrity in the data that occurs
under multiple inheritance.
• Which, notably, occurs only where architecture, standards and

the Relational context, are absent, where the monolith is
constructed in isolation.

• Notice the absence of context, of Domain

6.4 Instance/Open Architecture

1 In order to afford a comparison with the datagram, some instances
are given, without detailing the instantiation of classes.
• This is done reluctantly because we do not wish to validate the

focus on data content, thus we assert, the classification and
typing [4 Data Analysis] is relevant, the data content (this page)
is not.

2 Multiple inheritance may be designed and implemented without
Data Integrity being a constraining factor, or even a consideration.
• This further confirms that the implementation of Open

Architecture Relational database eliminates a variety of
problems, and that it provides more freedom: here in application
design space.

3 Again, the classes are merely a suggestion. The Key values may be
carried (not shown) or not carried (shown), depending on the extent
of dependence on the inherited classifiers.

List

0..1

0..*

Harvest

ActivityPerson Animal

Licensee

Domain

animal: String = Shrimp
date: Date = 1 Jan 2015
number: Int = 120
weight: Real = 3.5

newHarvest; Harvest

domain: String = Sea
activity: String = Sea-Fisher
nickname: String = Jonny
licenseNo: String = 987654A
licenseExp: Date = 31 Dec 2015
licenseClass: String = BB
ytdWeight: Real = 1234.5

newLicensee; Licensee

