
Bridge
Relational

Derek Asirvadem • 07 Jun 12 BridgeCopyright © 2012 Software Gems Pty Ltd

Person

BirthCountry AK.6
BirthPlace AK.5
BirthDate AK.4
Initial AK.3
FirstName AK.2
LastName AK.1
PersonId

Problem

Score
Name AK
ProblemNo

...

ComposerId

Solution
ProblemNo
SolverId

ComposerId

IDEF1X Notation

Solved
Fell To

Composer
ComposerIdIs

Composed

Entity Type
Identifying Entity
Transaction
TransactionDetail

F Solver_Max_4

C Solver_Not_Composer

Has

Joint-Composed

C Composer2_Not_Composer1

Composer
• Composer is a subset of Person
• Problems are created by a Composer, not any Person.
Problem
• The notion of an Independent Problem (one that exists without a

Composer to create it) is absurd
• The use of surrogates on initially-perceived entities cripples the

modelling process: Problem is not an Independent fact
• Thus Problem is Identified by its ComposerId, and a sequence of

ProblemNo within that
• The Alternate Key Name ensures that each Problem is unique.

Solution
• The ComposerId and the SolverId now appear in each row
• Thus a simple CHECK Constraint can be used, and the Function

(required for checking other rows) is eliminated

Composer_2
• Somewhat after the discussion, the model was completed to fulfil

the full original requirement. Since the second Composer is "rare",
an Associative table for Composers (plus a Constraint that calls a
Function that limits it to two Composers) is not reasonable.

• A simple CHECK Constraint is required to ensure the Composers are
not the same.

Composer_2
ProblemId
ComposerId_2

ComposerId

DDL

C Problem_Valid_Score

http://www.softwaregems.com.au
http://www.softwaregems.com.au/Documents/Documentary%20Examples/IDEF1X%20Notation.pdf
http://www.softwaregems.com.au/Documents/Tutorial/Bridge.sql

Bridge

Derek Asirvadem • 07 Jun 12 BridgeCopyright © 2012 Software Gems Pty Ltd

This page is required to overcome a document production bug

http://www.softwaregems.com.au

